Search results for "Metal-based nanostructure"

showing 2 items of 2 documents

Biotechnology of Rhodococcus for the production of valuable compounds

2020

Abstract Bacteria belonging to Rhodococcus genus represent ideal candidates for microbial biotechnology applications because of their metabolic versatility, ability to degrade a wide range of organic compounds, and resistance to various stress conditions, such as metal toxicity, desiccation, and high concentration of organic solvents. Rhodococcus spp. strains have also peculiar biosynthetic activities that contribute to their strong persistence in harsh and contaminated environments and provide them a competitive advantage over other microorganisms. This review is focused on the metabolic features of Rhodococcus genus and their potential use in biotechnology strategies for the production o…

BioconversionSiderophoreBioflocculantsBioconversionMicroorganismBiosynthesiIndustrial WasteSiderophoresBiosynthesisApplied Microbiology and BiotechnologyRhodococcus Antimicrobials Bioflocculants Biosynthesis Bioconversion Biosurfactants Carotenoids Lipids Metal-based nanostructures SiderophoresBioproductsRhodococcusTriglyceridesCarotenoidHigh concentrationbiologyAntimicrobialsChemistrybusiness.industryMetal-based nanostructureBiosurfactantBioflocculantGeneral MedicineMini-ReviewLipidbiology.organism_classificationCarotenoidsLipidsRefuse DisposalBiotechnologyBiosurfactantsbacteriaAntimicrobialbusinessRhodococcusMetal-based nanostructuresBacteriaRhodococcuBiotechnologyWaste disposalApplied Microbiology and Biotechnology
researchProduct

Processing of metals and metalloids by actinobacteria: Cell resistance mechanisms and synthesis of metal(loid)-based nanostructures

2020

Metal(loid)s have a dual biological role as micronutrients and stress agents. A few geochemical and natural processes can cause their release in the environment, although most metal-contaminated sites derive from anthropogenic activities. Actinobacteria include high GC bacteria that inhabit a wide range of terrestrial and aquatic ecological niches, where they play essential roles in recycling or transforming organic and inorganic substances. The metal(loid) tolerance and/or resistance of several members of this phylum rely on mechanisms such as biosorption and extracellular sequestration by siderophores and extracellular polymeric substances (EPS), bioaccumulation, biotransformation, and me…

biogenic nanoscale materials0301 basic medicineMicrobiology (medical)Siderophore010501 environmental sciencesSettore BIO/19 - Microbiologia Generale01 natural sciencesMicrobiologycomplex mixturesActinobacteria03 medical and health sciencesmetal resistance mechanismsBioremediationExtracellular polymeric substanceBiotransformationMetal stress responseVirologyBiogenic nanoscale materialBioprocesslcsh:QH301-705.5Settore CHIM/02 - Chimica Fisica0105 earth and related environmental sciencesbiologyChemistrybiology.organism_classificationActinobacteria030104 developmental biologylcsh:Biology (General)BioaccumulationEnvironmental chemistryMetal resistance mechanismbacteriaMetalloidMetal-based nanostructures
researchProduct